Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/ Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer
نویسندگان
چکیده
Upconversion nanocrystals with small size and strong fluorescent signals own great potential in applications such as biomolecule-labeling, in vivo tracking and molecular imaging. Herein we reported that NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with small size and strong fluorescent signals were controllably synthesized by oleic acid (OA)/ ionic liquid (IL) two-phase system for targeted fluorescent imaging of gastric cancer in vivo. The optimal synthesis condition of NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals by OA/IL two-phase system was established, adding more metal ion such as Na(+) ion could facilitate the size control and crystal-phase transition, more importantly, markedly enhancing fluorescent intensity of beta-phase nanocrystals compared with traditional methods. Alpha-phase NaYbF4, 2%Tm upconversion nanocrystals with less than 10nm in diameter and beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with 30 nm or so in diameter and strong fluorescent signals were obtained, these synthesized nanocrystals exhibited very low cytotoxicity. Folic acid-conjugated silica-modified beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals were prepared, could actively target gastric cancer tissues implanted into nude mice in vivo, and realized targeted fluorescent imaging. Folic acid-conjugated silica-modified NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals show great potential in applications such as targeted near infared radiation fluorescent imaging, magnetic resonance imaging and targeted therapy of gastric cancer in the near future.
منابع مشابه
Shape-controllable synthesis of hydrophilic NaLuF4:Yb,Er nanocrystals by a surfactant-assistant two-phase system
Water-soluble upconversion nanoparticles (UCNPs) were prepared by a one-pot procedure in a two-phase reacting system. Four kinds of surfactants were tested in the synthesis process as capping agent to tune size and morphology of nanocrystals. Nanoparticles (approximately 70 nm) and rods (400 nm and 2.5 μm) were synthesized, respectively. Then, Fourier transform infrared spectroscopy analysis co...
متن کاملPorous Acidic Catalyst, Functionalized with Imidazole Ionic Liquid ([SBA-Im]HSO4) as a Novel Phase Transfer Catalyst for The Aqueous Synthesis of Benzyl Thiocyanates and Azides
In the present study, application of porous acidic catalyst functionalized with an imidazoleionic liquid ([SBA-Im]HSO4) as a phase transfer catalyst for the facile preparation of benzylthiocyanates and azides in water has been described. The catalyst has been characterized byFourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmissionelectron microscopy (TEM...
متن کاملD2EHPA-Sulfuric Acid System for Simultaneous Extraction and Recovery of Nickel Ions via Supported Liquid Membrane Process
This research addresses the extraction and recovery of nickel ions from real electroplating wastewater using SLM process. The process involves three main phase system which are feed, organic and stripping phase. The feed phase containing the nickel electroplating wastewater whereas the organic phase containing the liquid membrane which was immobilized in the membrane support. The liquid membran...
متن کاملSynthesis and characterization of transition metal doped ZnSe/ZnS nanocrystals by a rapid photochemical method
In the present work, a one pot, rapid and room temperature photochemical Synthesis of transition metal (TM; Cu, Mn, Cr)-doped ZnSe/ZnS core/shell nanocrystals (NCs) was reported. FT-IR spectrum confirmed the capping of ZnSe by thioglycolic acid. XRD and TEM analysis demonstrated zinc blende phase NCs with an average size of around 3 and 5 nm for TM:ZnSe and TM:ZnSe/ZnS NCs, respectively. PL spe...
متن کاملA general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system.
Herein we report a general strategy to synthesize highly uniform and monodisperse rare earth fluoride nanocrystals through a novel OA/ionic liquid two-phase system, while water-soluble hexagonal NaREF(4) nanocrystals are obtained by adding n-octanol.
متن کامل